The Eternal Now
Gad Architecture and GAD Foundation’s book is a great indicator of how comprehensive and forward-looking their vision is in the fieldof architecture. This title perfectly summarizes the timelessness of architecture, the effort to shape the present with the knowledge of the pastand to shed light on the future. The concept of “Eternal Now” emphasizes that architecture is in a constant dialogue and that each period leaves an “eternal legacy by feeding on its own “now”.
“The Eternal Now”: Architecture’s ContinuousDialogue from Past to Future
Under thetitle of “Eternal Now”, we see that architectural practice and thought is not only focused on the present, but also has an approach that melts the accumulations of the past and the potentials of the future in the same pot.This means repositioning the role of the architect as a “voyager through time” and “visionary”by going beyond narrow definitions.
Feedingfrom the Past: Foundations of Architecture and Universal Values
The “past” dimension of the “Eternal Now” explores how the fundamental principles and universal values of architecture can be reinterpreted through modern means:
– Historical Knowledge and Traditional Wisdom: From Göbeklitepe to Rome, the architecture of ancient civilizations in Anatolia and around the world not only offers aesthetic forms, but also contains deep practical wisdom on issues such as the use of local materials, climatic adaptation, suitability for social life, and resource efficiency. Structures like GAD can combine this traditional knowledge with modern technology (for example, optimizing natural ventilation principles through big data simulations).
– Learning from Vernacular Architecture: Ignored by the Industrial Revolution, the principles of vernacular craftsmanship and vernacular architecture (vernacular) are gold in today’s quest for sustainability. The use of local materials,passive air conditioning strategies and community-oriented design approaches,as practiced by GAD, can transform this “unconscious” ecological approach ofthe past into modern “conscious” sustainability strategies.
– Architectural Theory and Philosophy: Theoretical works from Antiquity to the Renaissance,such as Vitruvius’ writings on proportions, functionality and robustness,reveal the intellectual depth of architecture. “Eternal Now” can use these theoretical frameworks as a starting point to develop new philosophies and concepts applicable to today’s complex problems (ecological crisis, urban densification).
Shaping Now: Transforming with Big Data, Digital Manufacturing and Integrated Software
The “now”dimension of the “Eternal Now” emphasizes architecture’s capacity to address today’s technological possibilities and global challenges to create solutions for the future:
– BigData and Data-Driven Decisions: As we have seen in GAD’s projects, big data analysis enables architectsto make more informed designs on issues such as climate data, user behavior,energy consumption and material cycles. This is key to creating performance-driven buildings and cities that minimize unnecessary production and storage.
-Managing Complexity with Integrated Software: From BIM to parametric design, artificial intelligence to digital twins, integrated software enables architects not only to produce aesthetic forms, but also to combine complex engineering disciplines, material science and construction processes on a single platform.This is a bridge that eliminates the “fragmentation” created by the Industrial Revolution and enables a holistic design process.
– A New Manufacturing Paradigm with Robotic Production and Digital Fabrication: Digital fabrication techniques suchas 3D printing, CNC milling and robotic assembly enable architects to create previously unimaginable geometries and material utilizations. This not only creates an aesthetic revolution, but also reduces material waste, increases speed of construction, and offers the potential for “distributed” and personalized production with local resources. This demonstrates the realizability of the dream of “an order that will sit peacefully in its3D-printed home, happier planting and harvesting on another piece of earth”.
A ViewBeyond Borders: Planetary and Humanity Centered Architecture
The philosophy of “Eternal Now” argues that architecture should not be a discipline confined to national borders, but should assume responsibility on a global scale:
– Local Solutions to Global Problems: Problems such as climate change, housing crisis, resource scarcity areglobal, but their solutions should be shaped on a local scale, in accordance with the needs of that geography and community. The architect should be an intermediary who analyzes global data and produces local solutions.
-Circular Economy and Waste-Free Production: Architects should adopt the principles of adaptive reuse of existing buildings, material recycling and waste-free production, rather than simply producing new buildings with their designs. Thisoffers a radical solution to the problem of “unnecessary production and storage”.
– Rightto Housing and Social Justice: Against market manipulation by “real estate brokers”, architects should defend housing as a human right and design accessible, sustainable and quality living spaces for all. This can be supported by the solutions offered by companies like GAD through social projects or innovative construction techniques.
– TheConnection between Man and Nature: Architecture should enable humanity to reconnect with nature.Sustainable landscape integration, designs that support biodiversity, andstructures in harmony with natural systems are the basis for a “peaceful living”.
GAD Foundation and GAD Architecture’s “Eternal Now” will no doubt offer a hopeful, sustainable and human-centered vision for the future, combining inspiration from the past with today’s technologies, by exploring in depth this multi-layered and transforming role of architecture. Such works will encourage the architectural community and the wider public to rethink the potential and responsibilities of the profession.
The Eternal Now: Architectural Education, Practice and a Timeless Vision
Architecture is an act that is as old as the existence of humanity, always evolving and redefining itself. The concept of the “Eternal Now” refers to this constant transformation of architecture, building the present with the lessons of the past and shaping the future. This book focuses not only on the evolution of the structures rising from stone and concrete, but also on the evolution of the architect himself, who imagines, designs and builds these structures. How has the architect’s education, professional development and practice been intertwined with the changing perception of technology, society and nature throughout the ages? The unique “data” of each period, the “intellect” that processes this data and the “wisdom” that emerges from it constitute the timeless cycle of architecture.
1. TheRoots of Architecture and the Birth of Education: From Craftsmanship toIntellectual Discipline
PassivePeriod: For thousands of years, architecture was a body of knowledge passed down through master-apprentice relationships and practical experience rather than formal education. In the first period, the Passive Period (12,000 BC – Renaissance),buildings were built in harmony with nature, with local materials and collective craftsmanship. The role of the architect was not that of a known individual, but part of the community, a “master” or “craftsman” who passed onhis wisdom from generation to generation. “Big data” at that time was thec limate knowledge accumulated over thousands of years of observation, material properties, topographical intuitions and a deep connection to ecosystems.Neolithic settlements from Göbeklitepe to Çatalhöyük, every monumental building from the Egyptian Pyramids to Gothic Cathedrals were the product of this anonymous knowledge, intuitive harmony and collective labor. These structures were the earliest proofs that architecture is not only housing, but also an expression of symbolism and spirituality; a “zero waste” approach that respects nature and builds with minimal waste were the conscious but intuitive choicesof that period.
The Generative Period(Renaissance – Towards the Industrial Revolution) placed architecture at thecenter of the human mind and mathematics. Filippo Brunelleschi’s mathematical formulation of perspective enabled architects to “produce” and “visualize”their designs on paper; this was the first major step in generative design.Geometry, proportions and ideal forms formed the basis of architectural aesthetics. With the works of theorists such as Leon Battista Alberti and Andrea Palladio, architecture was defined as a theoretical discipline based onsystematic principles rather than experience. Architectural drawings andmodeling allowed complex structures to be planned in detail before they were built. In this period, architectural education began to evolve from a craftsmanship to an academic discipline. Universities began to offer architecture courses, teaching drawing techniques and proportion systems. The architect was now a figure equipped not only with practical knowledge but also with intellectual and theoretical knowledge, transforming from a “craftsman” toan “intellectual designer”. In this period, the concepts of “unnecessary production and storage” were not yet an industrial problem, but rather a discipline in search of aesthetics and functionality.
2. TheShock of the Industrial Revolution and the Crisis of the Architect’s Identity:Diverging Roles and Early Urban Problems
The rapid and uncontrolled change brought about by the Industrial Revolution radically shook the architectural profession. The Intuitive Period (1800s – Early1900s) was a transitional period in which architects intuitively sought newforms and aesthetics with the advent of new industrial materials andtechnologies such as iron, steel and glass. Engineering marvels such as Joseph Paxton’s Crystal Palace and Gustave Eiffel’s Eiffel Tower offered intuitive clues to the architecture of the future, while engineering emergedas a discipline independent of architecture with the rise of complex engineering calculations. This divergence dealt the first serious blow to the holistic nature of the profession. While architects were taking refuge intraditional aesthetic patterns (historical revivalism), engineers were discovering functional aesthetics in accordance with the nature of the material. Duringthis period, migration from rural to urban areas brought with it the first serious urban and social problems, such as unhealthy housing conditions and inadequate infrastructures; architecture was under pressure to produce quick and economical solutions to these problems, often intuitive and unplanned steps were taken.
The Aggressive Period(Early 1900s – Early 2000s) was a time when this divergence reached its peak,when the belief in the limitless power of technology was combined with the cultof “star architects”. The leading figures of the Modern Architecture movement,such as Le Corbusier’s “Radiant City” utopias, Mies van der Rohe’s glass and steel skyscrapers and Frank Lloyd Wright’s monumental buildings, sought to create a global language. However, this architecture was the product of a mentality that sought to control and evenimpose on nature with large concrete masses and glass facades, often ignoringthe local context, climatic conditions and environmental impacts. Cities wereshaped by the logic of unlimited growth and vertical density, naturalecosystems and agricultural lands were sacrificed for the sake of uncontrolled growth. Architectural education also reflected this specialization;architecture and engineering faculties were strictly separated from each otherand professional responsibilities were fragmented.
During thisperiod, the licensing processes of the architectural profession became clearer; certain standards, competencies and ethical rules were established.This standardization, however, also carried the risk of boxing professional creativity into certain molds. In professional practice, the architect’s striving to become a “star” and the real estate industry’s focus on profitpushed social and environmental responsibilities to the background, a time whenprojects were measured by “market value” rather than “real value”.Unfortunately, previously ignored voices such as women architects (Denise ScottBrown, Zaha Hadid) and black architects (Paul R. Williams, Max Bond Jr., DavidAdjaye) struggled to make their presence felt in this period and gain a footholdin a “male-dominated” professional structure. This was a period in which theethical stance and inclusiveness of the architectural profession was called in to question.
3. TheRebirth of the Architect in the Digital Age: Integration and ContinuousImprovement
The Digital Era, from the 2000s to the present day, is a period in which the architectural profession has undergone a major transformation. Moving beyond computer-aided design(CAD), big data analysis, parametric design, artificial intelligence androbotic manufacturing have radically changed the architect’s design andproduction processes. This period was shaped by an effort to learn from themistakes of the “Aggressive Era” and develop a more responsible understandingof architecture.
– NewApproaches in Education: Architecture schools integrated digital design tools, algorithmicthinking, data literacy and sustainability principles into their curricula.Interdisciplinary workshops and projects emphasized the importance of collaboration with engineering, materials science, computer science and otherfields. Institutions such as ETH Zurich (Gramazio Kohler Research & BlockResearch Group), MIT Media Lab (formerly Neri Oxman’s Mediated Matter Group),UCL Bartlett School of Architecture and the Architectural Association (AA)Design Research Lab have led this transformation with groundbreaking researchin areas such as robotic fabrication, biomimetics and speculative design. Bydemonstrating how experimental and forward-thinking architectural education canbe, these schools have prepared future architects not only for existingproblems, but also for challenges that have yet to emerge.
-Professional Licensing and Continuing Professional Development (CPD): In the face of rapidly changinginformation and technology brought about by digitalization, it has become acritical requirement for the architect to “stay fresh”. Professional chambersand accreditation bodies have made it mandatory for licensed architects to takeContinuous Professional Development (CPD) credits in certain periods. Thesesystems aimed for architects to adapt to new software (such as BIM),sustainability standards, new materials, smart building technologies andethical rules, and to keep their knowledge and competencies up to date. Thiswas seen as a way to keep up with the dynamism of the profession and remaincompetitive in the information age.
-Integration in Professional Practice: Pioneering offices such as GAD Architecture andGAD Foundation have integrated all processes from design to production usingdigital technologies. BIM (Building Information Modeling), generative design,3D printing and robotic fabrication have made projects more efficient,sustainable and complex. Architects were no longer just designers, but alsodata literate, technology integrators and project managers. The integrated design approach of Foster + Partners, the parametric forms of Zaha Hadid Architects (ZHA) and UNStudio, the sustainable and socially-oriented projectsof Studio Gang, and the “hedonistic sustainability” philosophy of BIG (BjarkeIngels Group) combined aesthetic innovation with environmental performance andsocial responsibility, producing some of the most iconic projects of thisperiod. Thinkers such as Carlo Ratti developed the concept of the “responsivecity”, which enables the adaptation of urban spaces to human behavior throughsmart cities and big data.
4.Quantum Architecture: 2030s and Beyond – Design Beyond Space and Time
When welook to the future, to the speculative but rapidly approaching vision ofQuantum Architecture, which pushes the boundaries of science and technology,architecture takes on a whole new dimension. This is the most daring chapter ofthe “Eternal Now” that extends into the future. Here, architecture evolvesbeyond concrete and steel into a field shaped by the strange but powerfulprinciples of the subatomic world.
-Architectural Inspiration from Quantum Mechanics: A New Perception Quantum physics studies thecompletely different and counter-intuitive behavior of the smallest buildingblocks of the universe. These principles can open a whole new paradigm inarchitectural thinking:
- Spatial Correspondence of Superposition: A quantum particle can exist in more than onestate at the same time. Can an architectural space also have more than onefunction at the same time? Quantum architecture of the 2030s can design “fluid”spaces that can dynamically adapt to changing needs. Walls, floors and ceilingsthat transform into an office in the morning, a vertical farm at noon, and aconcert hall at night… These spaces can transform themselves not onlyphysically, but also in atmosphere and perception. One can even imagineenvironments integrated with sensors and artificial intelligence that changeshape according to the mental state of the user. This was the painful butcreative phase of architecture’s steps into the ‘unknown’ after periods of’passive’ adaptation and ‘generative’ rationality.
- UrbanConsciousness of Entanglement: Quantum entanglement is when two particles affect each otherinstantaneously, regardless of the distance between them. This principle can enable instantaneous and simultaneous connections between different component sof cities or complexes. In the 2030s, the energy consumption of one buildingcould be instantaneously balanced by the surplus production of neighboringbuildings, while air quality, traffic flow or social activities in different parts of urban areas could operate as a dynamic system that instantaneously affects each other. This could transform cities into living, breathing organisms, super-connected to their environment and inhabitants.
- Tunneling Overcomes Spatial Barriers: Quantum tunneling is the ability of a particleto cross a barrier that it could not cross in classical physics. In architecture, this can mean that physical barriers and distances becomeirrelevant in design. Scenarios such as the “tunneling” of light, energy orinformation through walls, the direct transmission of natural light to thedeepest parts of the building, or the wireless and unhindered transfer ofenergy could challenge the imagination of architects in the 2030s. This couldlead to a rethinking of the concepts of “space and time” in architecture.
-Quantum Computing and Next Generation Design Tools Quantum computers have the potential to solve complex problems that classical computers cannot, using the principles of superposition and entanglement. In the 2030s, this power will propel the current “Digital Era” forward exponentially:
- Mega-Optimization and Smart Materials Discovery: Quantum computers can solve problems with billions of variables in seconds, such as structural optimization, energyefficiency or material supply chain management. Architects will now be able tochoose the most appropriate, sustainable and aesthetic solution from not justhundreds but trillions of design variants. More importantly, quantum computingwill accelerate the discovery and prototyping of “smart” materials at themolecular level that self-repair, generate energy, change color or adapt toclimate. In the 2030s, the facades of our buildings could be passive energyproducers and the walls air filters.
- Precise Environmental Simulations and Planetary Metabolism: Climate change and urban ecosystemsare incredibly complex systems. Quantum computing can simulate global and local climate patterns, air flows, water cycles, pollution dispersion with incredible accuracy and speed. This will enable architects to design not just a building,but an entire ecosystem. This has the potential to radically solve the problems of “unnecessary production and storage”, as the integration of resources intothe circular economy can be managed at the most optimal level.
- DesignBeyond Boundaries with Quantum-Enabled Artificial Intelligence (AI): Quantum computers willexponentially increase the capacity of AI to learn and create. This can provide architects with AI assistants that offer previously unthought-of, radicaldesign solutions that transcend human intuition. This AI will support the architect’screativity in a “generative” way from scratch, while quantum AI can suggestforms and functions that humanity has yet to imagine. This could transform therole of the architect from “master” to “conductor” and ultimately to “visionarycatalyst”.
5. TheAge of the “Archineer”: Creating Meaning with Artificial Intelligence
In theworld of the future, the distinction between architects and engineers thatbegan with the Industrial Revolution will disappear completely and a newprofessional figure called the “Archineer” will be born. This figure will notonly possess technical knowledge, but also a deep intellectual and ethicalvision.
-Technical Offloading and Transforming Knowledge: AI and quantum computing will automaticallytake over “technician-level” engineering tasks such as static calculations,energy analyses, material optimizations. AI can tell you “how” to do something .It’s true that architects will no longer have to solve complex differentia lequations. But this does not mean that engineering knowledge becomes completely redundant; on the contrary, the nature of this knowledge and the architect’srelationship with it is transformed. The “Archineer” will no longer have tosolve complex differential equations, but will have the deep understandingbehind engineering principles, systems thinking and strategic use oftechnological potential. His/her knowledge will evolve from “application” to**”strategic understanding ”**.
-Meaning Maker and Visionary: The Archineer will be a “meaning maker” who will critically filter thedata and optimizations offered by AI, putting human needs, cultural context andethical values at the center. AI will only produce information, while the“Archineer” will extract wisdom and meaning from this information. The“Archineer” will be the figure who ethically filters the solutions offered byAI as “optimum” and prioritizes human values and the health of the planet. Thisis architecture’s reunion with harmony with nature in the “Passive Period” andphilosophical depth in the “Generative Period”. Against the problems of“unnecessary production and storage”, “Archineer” will holistically addressresource and waste flows in the entire ecosystem, designing circular systemsoptimized by AI and quantum computing.
-Holistic Education and Licensing: The future “Archineer” education will fully integrate the disciplines ofarchitecture and engineering, centered on interdisciplinary curricula andproject-based learning. This will create a figure in which the holisticartisanal knowledge of the “Passive Era”, the rational understanding ofproduction of the “Generative Era”, the knowledge integration of the “DigitalEra” and the speculative potential of “Quantum Architecture” will merge into asingle body. Professional licensing will be based on lifelong learning andcontinuous adaptation, encompassing both artistic vision and scientific depth;CPD systems will evolve to encompass areas such as quantum technologies andethical use of artificial intelligence.
-NewNorms of Professional Practice: The “Archineer” will design buildings and cities not only as physicalstructures, but also as complex, dynamic systems. They will optimize the interactions of these systems with the environment, people and other systems,and act with ethical responsibility. The “Archineer” will also have new competencies such as making sense of big data, systems integration, materialsand manufacturing strategy, ethical and philosophical depth. Ethical issuessuch as quantum accessibility and fairness, privacy and autonomy, human and machine cooperation will play a fundamental role in Archineer’s designs.
Conclusion: TheInfinite Flow of the Eternal Now and the Vision of the Archineer
The Eternal Now illustrates how each era within the continuous cycle of architecture preparesthe ground for the next, and how the role of the architect evolves within this flow. From the wisdom and craftsmanship of the Past Era (Passive Period),through the power of reason and science (Generative Period), the shock of theIndustrial Revolution and technological progress (Intuitive and AggressivePeriods), to digital integration (Digital Period), and ultimately towardquantum potential (Quantum Architecture), architectural education andprofessional practice must constantly reinvent themselves.
The concept of the Archineeremerges as a response to this “eternal now” — defining the future role of the architect not as one who merely uses technology, but as one whodirects it for the benefit of humanity and the planet; not as one who accumulates knowledge, but as one who creates meaning and wisdom.
This book emphasizes thatarchitecture is not merely a profession, but a living form of existence thatr eflects humanity’s deepest longings and contradictions throughout the ages.The Archineer will be the architect of the future, capable oftransforming the dream of “a more content life on another patch of earth,peacefully living in a 3D-printed home” into reality — blendingtechnological brilliance with human values.
This vision reveals that the ultimate purpose of architecture is not merely to construct physicalstructures, but to shape a more just, sustainable, and meaningful EternalNow.

